• <xmp id="immmm"><noscript id="immmm"></noscript>
  • <xmp id="immmm">
  • <noscript id="immmm"></noscript>
  • <td id="immmm"></td>
  • <td id="immmm"></td>

    硒、硒蛋白和女性生育(綜述)

    發表于:2019-05-13   作者:admin   來源:本站   點擊量:3720

    摘要:硒(Se)是一種對動物和人類健康有著多種重要功能的必需微量元素。根據最近三大生命領域的報道,硒的生物功能往往通過硒蛋白(由人體25種基因和小鼠24種基因編碼)實現。作為硒蛋白的組成部分,硒能發揮結構功能和酶活性,在后者中,其酶促和抗氧化活性已廣為人知。在本綜述中,我們重點關注了硒和硒蛋白的生物功能,并對硒與女性生殖功能之間的關系作了詳細綜述。由于此類研究大多關注于硒在妊娠中的作用,硒水平與女性生殖能力相關的數據目前仍然缺乏,只有最近硒在卵巢生理分泌作用方面的一些數據。我們對硒或硒蛋白在調節女性生殖方面的分子和生物化學機制仍所知甚少,其在人類妊娠及其并發癥方面的作用仍然未被充分闡明。在低硒水平人群中進行的隨機對照干預試驗將會為闡明硒及硒蛋白的作用做出重要貢獻。同時,對補充硒和硒蛋白(如GPX1、SELENOP和SELENOS)在卵巢功能和整體女性生殖能力方面的潛在效應的闡明也具有極大價值。
     
    關鍵詞:女性生育;繁殖;GPX1;不孕;卵巢功能;氧化應激;子癇前期;硒;硒蛋白
     
     
    1. 引言
     
    硒(Se)是一種在分子和組織水平上對動物和人體健康具有多種重要功能的必需微量元素,與多種病理生理學相關[1]。硒的生物功能主要通過硒蛋白(由25種人類基因和24種小鼠基因編碼的含硒蛋白)形式來實現,報道顯示,真核生物、古細菌、真細菌這三個生命領域都存在硒蛋白,此外,在病毒中也發現了硒蛋白的存在[2-4]。作為硒蛋白的組成成分,硒具有結構功能和酶相關功能。在后者中硒的催化和抗氧化活性被廣泛認知[1]。
    所有發現的哺乳動物的硒蛋白中,只有少數硒蛋白被發現具有功能活性[4]。雖然這些硒蛋白作用的分子通路和所具有重要生物功能都各有不同,但它們至少都含有一種硒代半胱氨酸(Sec,一種含硒氨基酸,它是第21種自然形成的氨基酸,與其它翻譯后修飾的氨基酸不同,硒代氨基酸能通過生物合成嵌入到蛋白質中[3,5]),并且其中大部分都能發揮氧化還原酶的作用[4,6]。包括DNA的脫氧核糖核苷合成、清除有害過氧化物、被氧化的蛋白和細胞膜的還原、調控氧化還原信號、甲狀腺激素代謝、蛋白質折疊和硒的運輸和貯存在內的多種重要細胞生理活動均被發現需依賴于硒蛋白進行[4]。在此,我們選擇了一些與繁育、生殖和發育相關的哺乳動物硒蛋白,并簡述總結于表1中。
     
     
     
    硒通常以有機硒或無機硒的形式被攝取。硒形態對其在健康和組織生長方面的潛在益處和或毒性效應有重要影響[7,40,41]。因此,對植源和動物源食物中的硒形態的考量是十分重要的,此外,我們還需要對硒被植物吸收,以及在動物體內代謝的相關生物機制進行闡明[42]。近期研究發現,膳食硒的總攝入量和硒形態均對健康效應有著重要影響,不過,硒形態對健康效應的影響可能會相對更大[42]。不同哺乳動物的硒推薦攝入量可見表2。
     
     
     
    一些哺乳動物研究驗證了硒水平與男性[52,53]、女性[53,54]生殖功能之間的關系?,F有證據表明,硒在多種不良妊娠健康情況中具有重要意義,如子癇前期,自身免疫性甲狀腺疾病、流產和早產[29]。此外,缺硒或許對生育率下降、胎盤滯留和生殖疾病的發生(如子宮炎)具有重要影響[55]。硒增加帶來的生育率的增加或可歸因于妊娠30天內的胚胎死亡率的下降[55]。大多數的女性研究主要集中在硒在妊娠中的作用[56-60],但最近也有關于硒在卵母細胞的發展和卵巢生理方面的潛能的相關研究被報道[8,53,61]。
     
    2.硒和硒蛋白的運輸
     
    研究顯示,缺硒會導致硒蛋白濃度的下降[62]。Bosl及其同事發現,純合子Trsp(-/-)胚胎合成硒蛋白的能力低下促進了其胚胎死亡[63]。硒蛋白合成由tRNASec介導,然而tRNASec自身的數量并不太可能限制硒蛋白合成,反而硒自身的可用性可能發揮了重要作用[63]。因此,孕婦為胚胎或胎兒提供硒對硒蛋白的合成是必需的[14]。硒經胎盤進行的運輸具有雙向性,或會影響硒在孕婦、胎兒和新生兒組織中的凈滯留[7,64]。硒是否容易穿過女性胎盤組織或滲透包含在胎盤組織中目前仍不太清楚[7,65]。小鼠血漿中的兩種細胞外硒蛋白(硒蛋白P和谷胱甘肽過氧化物酶3(Gpx3))含有97%的硒[14,66]。硒蛋白P主要在肝臟中合成,再將硒運往其它大部分組織[14,67],然而關于Gpx3在硒運輸方面的作用的信息卻相對缺乏[14]。硒蛋白P的運輸由載脂蛋白E受體2所介導,后者可作為體循環中的硒發生細胞內吞作用的媒介[14]。與其它組織和器官中的apoER2類似,胎盤中的apoER2似乎也能攝入硒蛋白P[14]。最近有報道表明硒蛋白P和Gpx3都可能參與了硒從孕婦到發育中的胚胎組織器官中的轉運[14]。這些發現為硒的轉運機制(卵黃囊與胎盤機制)提供了思路[14]。
    小鼠實驗發現,胚胎卵黃囊介導的母-胎硒轉運發生在妊娠早期,晚期則通過胎盤進行[14,68]。胚胎卵黃囊能吸收子宮中含有硒蛋白P和Gpx3的液體進而實現硒運輸,而胎盤則通過apoER2介導的細胞內吞作用吸收母體血液中的硒蛋白P[14]。這兩種吸收機制都依賴于硒蛋白并需在特殊機體環境下進行(如缺硒)[14]。然而,也有研究表明硒的這種運輸也可獨立于硒蛋白P和Gpx3(血漿硒蛋白)進行[14]。硒蛋白P和Gpx3基因敲除小鼠能夠在高硒飲食中存活,表明硒到組織還有其它運輸途徑[14,66,68]。由此可推斷或許存在兩種特定水平下的硒轉運機制:低級機制和高級機制[14]。低級機制(可能涉及硒多糖或其它小分子硒化物)似乎并不直接依賴于硒蛋白[14],而高度依賴于妊娠母體的硒水平,這種機制降低了缺硒條件下的轉運效率和在硒充足條件下的有效性 [14,68]。另一方面,高級機制(硒蛋白P-apoER2機制[69])即使在膳食硒不足的情況下也能夠根據需求將硒運輸到靶向組織中[14]。Burk等人發現胚胎卵黃囊介導的硒運輸就具有高等運輸機制的特點[14]。雖然這種運輸不由硒蛋白受體介導,但它明顯依賴于細胞對硒蛋白攝入,并在硒缺乏條件下也依然有效[14]。因此,無論是胚胎卵黃囊還是胎盤都能通過高等機制來實現母-胎硒運輸(硒蛋白依賴),從而為缺硒孕婦的胎兒提供保護[14,68]。
     
    3.硒蛋白在女性生殖器官中的表達
     
    無機硒和有機硒均與硒蛋白P的表達調控相關[7]。研究發現,妊娠期大鼠的胎盤中的硒含量和硒蛋白的表達水平會同時上升[7]。許多硒蛋白如硒蛋白P、碘甲狀腺原氨酸脫碘酶3(Dio3)和硫氧還蛋白還原酶(Txnrd)均會在子宮內表達[7,70]。同時,有證據發現GPX1、GPX2、GPX3、GPX4、SELENOS(也被稱為VIMP)、SELENOT、SELENOF、SELENOH、SEPHS2、DIO3、DIO1和SELENOM等其它硒蛋白在牛卵巢顆粒細胞中也會表達[8]。小的、閉塞的牛卵泡中觀察到了健康牛卵泡所沒有的硒蛋白P表達上調和GPX1、GPX3表達下調[71]。在妊娠期小鼠中還觀察到了胎盤和子宮中硒蛋白P的表達改變[7,72]。足月小鼠生產前四天其硒蛋白水平出現了不尋常地增長,并達到了峰值[72]。此外,硒蛋白在小鼠胎兒肝臟中也被發現具有早期表達[72]。
    甲狀腺激素對哺乳動物的生育能力尤為重要,貫穿了胚胎發育始終[73]。在人類和嚙齒動物中,缺乏甲狀腺激素與生育能力降低、發情周期失調、子宮結構與著床受損,以及其它哺乳動物妊娠問題相關[73]。Galton及其同事發現,妊娠小鼠的子宮中的Dio3 mRNA具有顯著更高水平的表達[30]。Dio3的表達具有時間和區域特異性,例如,妊娠第九天發現子宮中層和抗中層蛻膜中存在Dio3的高度表達[7,30]。此外,著床位置也可觀察到Dio3 mRNA及其相關活動[30]。Dio3在著床位置上的這種高水平表達可能是出于對暴露于母體甲狀腺激素中的胎兒發育的一種保護[7,30]。此外,在人類胎盤細胞中,Dio3活性隨胎齡增加而增加[7,74]。有力證據表明,妊娠期的胎盤組織在調節胎兒在母體甲狀腺激素中的暴露水平方面發揮著重要作用[30]。此外,在合胞體滋養層和細胞滋養層、胎盤血管內皮層和臍帶羊膜、子宮蛻膜、胎兒上皮和非妊娠子宮內膜中也發現了較高的Dio3表達[31]。這些研究結果表明,甲狀腺激素水平的區域性調控對女性生育的全部階段都具有重要作用[31]。其它一些因素也被認為對胎盤和子宮具有影響[7]。硫氧還蛋白還原酶(TPX)和TXNRD在人類和嚙齒動物胎盤中也具有區域特異性表達[7,75,76]。組織化學觀察表明,這兩種蛋白酶都集中在子宮內膜和干細胞間質細胞的胚胎滋養層和上皮組織中[7,75,76],有研究發現,這兩種蛋白能在炎癥環境下保護胎盤組織。
     
    4.硒在卵泡發育和卵巢功能中的作用
     
    卵巢顆粒細胞的生長是卵泡發育過程(如卵泡形成)的一個重要特征。初級小濾泡的增殖(伴隨著更少的卵巢顆粒細胞)發育為排卵前期的成熟卵泡(伴隨著多層細胞)是卵泡生成過程中的特征性事件[77]。動物實驗發現,硒也許能調控卵巢顆粒細胞的生長,成人卵巢體外實驗發現,硒或許還能調控17β-雌二醇的生物合成[77]。近期研究也證實了在健康卵泡中硒和硒蛋白水平的上升,這也許是為了在卵泡后期和增殖階段提供重要的抗氧化功能[8]。然而,人們對硒在卵巢功能和發育中的這種調節作用現在仍知之甚少[78]。Grazul-Bilska及其同事研究發現,相較于硒適當組(6μg/kg bw),孕期膳食中的高硒水平(80μg/kg bw)抑制了初級、次生、竇卵泡、基質和羊水中胎兒血管系統的生長。伴隨著高硒飲食,原始卵泡增殖數和原始卵泡標記指數(增殖細胞百分比)出現下降[78]。
     
    4.1 體外和動物模型試驗證據
     
    亞硒酸鈉(無機硒)不僅能促進卵母細胞生長,還能提高膜細胞和顆粒細胞的增殖率。為了驗證這一假設,Basini和Tamanini進行了一項體外實驗,結果表明補充亞硒酸鈉(5ng/ml)促進了牛顆粒細胞的增殖,并對E2合成起到了一定刺激作用。這些作用可以至少部分通過抑制一氧化氮的生成來實現[77]。此外,這些作用還可能受到了顆粒細胞中的某些未知的硒依賴性抗氧化酶的影響[77]。在另一項體外實驗中,Kamada和Ikumo發現在培養基中添加5和200ppb的硒能促進牛黃體細胞的增殖,并具有抑制ROS危害的潛力[79]。GPX還被發現能刺激FSH的活性來抑制培養的大鼠卵巢中卵泡的凋亡[80]。另外,缺硒被證明能促進大鼠的卵巢退化和卵泡閉鎖[81]。最近,Yao及其同事進行了一項體外研究來闡明硒在山羊黃體顆粒細胞增殖和甾體激素生物合成中作用的潛在機制[61]。增殖細胞核抗原(PCNA)、Akt、磷脂酰肌醇3激酶(PI3K)等生物標記物表主要在卵巢卵母細胞和顆粒細胞中表達[61]。黃體顆粒細胞增殖能被5ng/ml硒顯著刺激[61]。這種增殖或許是通過上調PCNA、周期依賴激酶1(CDK1)、磷酸腺苷活化蛋白激酶(p-AMPK,Thr172)和磷酸化Akt(p-Akt,Ser473)等生物標記物的表達和下調p21的表達來實現的[61]。同樣,用硒處理還促進了雌二醇分泌,并顯著上調了抗氧化酶(GPX和SOD2)和甾類生成相關基因(3β-HSD和StAR)的表達[61]。此外,最近還有研究聚焦于硒在牛卵巢組織中的生物積累[8]。Ceko及其同事通過射線熒光成像技術成功在大的、健康的卵泡中鑒定出了硒,同時,與黃體相比,在牛卵泡的細胞膜上鑒定出了高出黃體10倍左右的硒含量[8]。這些發現均表明,抗氧化型的硒蛋白主要在卵泡中發揮潛在作用,例如,在升高的ROS及其相關氧化損傷中保護卵泡。
     
    4.2 人類研究證據
     
    女性生殖與硒水平、硒依賴性GPX催化活性之間的關系在極少數的幾項研究中得到了驗證,這些研究發現,低硒與低濾泡液水平與更高的不孕癥發生有關[82]。1995年,Paszkowski及其同事首次在人類濾泡液中發現了硒,其中的酶活性表現出硒依賴性[10]。研究者們還評估了來自112位患者陰道卵母細胞的135個濾泡液樣本,發現相較于那些知曉病因的不孕癥患者(如輸卵管不孕或與男性因素相關的不孕),具有特發性不孕癥的患者的濾泡硒水平顯著降低[10]?;谠摪l現,研究者們推測,濾泡微環境中的含硒酶GPX的抗氧化活性或許在配子發生和受精過程中發揮了重要作用[10]。最近,Ceko的研究團隊提出GPX1在測定卵泡生長、成熟和優勢中具有重要作用[8]?;诖?,源自卵丘卵母細胞復合體(COCs)的人類卵丘細胞(CCs)被用于體外受精(IVF)和卵母細胞胞漿內單精子注射[8]。這些在胚胎移植前從COCs中恢復的CCs在妊娠期中的GPX1表達明顯高于那些妊娠失敗者[8]。許多研究者們還發現在膳食硒缺乏的情況下會出現GPX1表達下降,這表明部分卵巢疾病也許能通過補硒進行改善[8]。這些發現將會成為飲食硒攝入、GPX1的體內表達、排卵相關疾病等相關流行病學研究的基礎[8,9]。
     
    5. 硒在卵巢病理及輔助生殖技術相關的氧化應激中的意義
     
    氧化應激、女性生育能力降低和缺硒之間的相關性是另一個需要我們調查和研究的領域[83]。一個有益的事實是,子宮內膜異位癥(如多囊性子宮內膜異位癥)中ROS的過度生成可能導致硒的過度消耗(因硒的抗氧化作用)。低硒水平則會導致伴隨著ROS增加的氧化還原水平失衡,后者被認為是多囊卵巢綜合癥的誘發因素。無論如何,機體的低硒水平會導致對自由基誘導損傷的防御下降,這或許可歸因于硒參與硒蛋白的形成并與其抗氧化能力密切相關[84]。
     
    5.1 人類研究
     
    對患有不孕癥或原發性卵巢功能不全(POI)的卵巢自身免疫性患者的鑒定也許可借鑒化療、環境、遺傳和輻射相關因素患者并尋找替代治療方案[85]。硒結合蛋白1(SBP1)對卵巢自身免疫相關的不孕癥和POI具有特殊意義[85]。Edassery及其同事在特發性不孕癥的婦女中發現了與血清自身抗體相關的抗原分子。在患有特發性不孕癥和卵巢功能早衰的女性中發現了明顯更高水平的SBP1[85]。印度的Singh等人研究了經歷過體外受精(IVF)的子宮內膜異位癥和輸卵管不孕癥的女性的濾泡液中的氧化應激標記物,結果發現與對照相比,子宮內膜異位癥患者的濾泡液中的ROS和丙二醛生成顯著增加[86]。此外,相較于長期輸卵管不孕不育的女性,子宮內膜異位癥合并不孕的女性濾泡液中的硒水平顯著降低[86]。2013年土耳其的一項研究表明,36位患有多囊卵巢綜合征的女性的血漿硒水平顯著低于對照組(n=33,BMI健康女性)[87]。這些多囊卵巢綜合征女性患者的硒水平降低可能與高雄激素血癥有關[87]。
    此外,適量補充包括硒在內的微量元素被發現也許能顯著影響濾泡微環境中的氧化還原平衡,從而影響IVF結果[88]。最近兩項關于ART的臨床試驗(Luddi等[88]和Jimenez Tunon等[89])發現,補硒(以微量元素形式)也許能改善IVF結局(表3)。這些研究均因其樣本量過少而存在局限性,另一局限性在于這兩項實驗均是將硒與其它微量元素合用進行補充,因而不能完全排除其它微量元素的影響。這些發現或許能在一定程度上為臨床醫生應對經IVF治療的女性時提供一些參考[88]。然而,我們仍需對孕婦在懷孕期間的營養進行的機械和流行病學研究,特別是對多種微量營養素及其相互作用的研究,來充分闡明這些因素在成功生育和懷孕中的重要性[90]。
     
     
     
    5.2 體外研究
     
    一般來說,胚胎因比成年人更低的抗氧化酶活性從而使其對氧化損傷尤為敏感[91,92]。為了維持胚胎的生存能力與質量,一般需要特定的培養基。雖然,許多胚胎的培養環境容易實現,但要實現胚胎發育的最優環境卻具一定的困難。目前,一項關于促進囊胚發育物質的研究正在進行[93,94]。為了確保所培養的細胞中的硒蛋白能正常進行生物合成,主流培養基中往往都會添加硒元素[94-96]。具有酶促活性的GPX不僅依賴于硒和維生素B6,同時也依賴于谷胱甘肽(GSH)活性[97]。豬卵母細胞中的GSH的數量不僅與受精相關,也與促進胚胎著床發育相關。胚胎期的GSH會不斷減少,并在在囊胚期達到最低點。值得注意的是,在這一時期,內源性ROS的水平將達到最高[98]。由此可推斷,GSH的降低與ROS的升高對正常分化過程具有一定的功能性意義[99,100]。此外,有研究發現,ROS或許對小鼠胚泡中的細胞凋亡發揮著重要調控作用[99]。
    在胚胎培養基中添加硒能減少氧化損傷、調控細胞凋亡進而提高豬單性生殖胚胎的發育能力和總體質量[94]。在培養基中添加亞硒酸鈉(2.5和25ng/ml)也被發現能提高囊胚率、細胞數和內細胞群比例,從而減少豬孤雌生殖胚胎中的細胞凋亡,以及BAX/BCL-xL基因比值和Caspase3的表達,并提高其GPX和ERK1/2的表達[94]。此外,補硒還能提高體外成熟卵母細胞細胞內的GPX濃度和活性,調控基因表達,改善體外受精的牛胚胎的囊胚發育和質量。近期中國的一個研究團隊研究了濾泡液中的硒濃度和補硒對細胞分裂的影響,CCs中DNA的完整性,卵母細胞的發育能力,去除卵丘的卵母細胞中的GPX活性,和體外培育的牦牛卵母細胞中的硒相關基因的表達[53]。隨著在體外培養基中添加硒(2和4μg/ml亞硒酸鈉),與對照組(0μg/ml亞硒酸鈉)相比,加硒組中所培養的卵丘細胞中的DNA損傷顯著降低。同時,總GPX活性、囊胚形成率以及硒相關基因的表達都被顯著上調[53]。
    另一項體外研究聚焦于亞硒酸鈉的作用。Abedelahi的實驗組研究發現,在培養基中添加5或10ng/ml亞硒酸鈉能減輕從玻璃化和非玻璃化卵巢組織中獲得的竇前卵泡中由ROS引起的氧化應激,并提高其總抗氧化能力(TAC)和GPX活性[101]。此外,硒處理組的卵泡、卵母細胞和胚胎的發育率也顯著上升[101]。同樣的,在其早期的體外研究中,該研究團隊也發現在培養基中添加5和10ng/ml亞硒酸鈉將會對卵泡和卵母細胞的生長和生存能力發揮出出劑量依賴性的改善作用,這些作用或可歸因于硒能以劑量依賴的方式發揮廣譜抗氧化能力[102]。綜上所述,這些發現可在某種程度上為促進體外卵母細胞成熟以及提高哺乳動物卵母細胞和胚胎的發育能力提供一些參考,也可作為該領域未來研究的基礎。
     
    6.母體補充膳食硒的作用
     
    在妊娠期間,母體補充膳食硒不僅能加強抗氧化活性,促進雌二醇、孕酮和T4生成,還能提高機體對主要營養成分的新陳代謝[103]。最近幾項研究評估了使用有機硒或無機硒合并其它維生素(如VB6)對母體進行營養補充的作用。結果表明,VB6對有機硒在硒依賴性GPX的抗氧化防御系統中的代謝有著重要作用[104-106]。補充膳食硒對母體的氧化應激、抗氧化活性、胚胎發育和生育能力的影響相關的一系列動物實驗被總結在表4中。
     
     
     
    7.硒和胎盤中的氧化應激
     
    補硒對GPX和TXNRD等內源性抗氧化酶的表達和活性是非常重要的。在細胞實驗中,補硒緩解了細胞模型中的氧化應激引發的損傷,從而為微量元素補充劑在減輕某些妊娠相關疾病中的安全效用和關鍵機制提供了些許思路[32,110-112]。胎盤中的氧化應激對妊娠并發癥(如子癇前期,子宮內生長受限,妊娠期糖尿病和早產)的病理生理和發生具有重要意義[110]。充分闡明胎盤氧化應激引起的胚胎滋養層細胞凋亡的相關機制也許能為先兆子癇的預防提供新的干預措施,據報道,先兆子癇為美國帶來了每年超過8萬的早產兒,在全球范圍內造成了每年約七萬五千名產婦的死亡[19,111]。近期一些報道揭示了硒提高整體滋養層細胞的線粒體功能和生物合成的潛在機制[32,59,110-112]。這些結果表明,硒帶來的這些益處是通過提高抗氧化功能、減少ROS產物從而保護線粒體功能并增加線粒體生物合成來實現的[112]。此外,SELENOH被發現能激活NRF1和PGC-1α等轉錄因子來促進胚胎滋養層細胞中的線粒體生物合成[113]。這些發現有助于闡明滋養層細胞對氧化應激的響應機制,以及硒如何調控相關基因,進而通過調節線粒體功能來改善細胞存活率及其侵襲能力[114]。補硒在改善胎盤滋養層細胞系的線粒體生物合成和功能的近期相關研究匯總于表5中。
     
     
     
    8.硒對妊娠的影響
     
    大量研究已經證實,硒參與了GPX、SELENOP、TXNRD族等硒蛋白的生物合成,從而對妊娠有著重要作用,尤其是在妊娠期間氧化應激增加的情況下[115]。因此,抗氧化防御機制對調控氧化應激極其重要,甚至還與圍產期發病率和死亡率相關[116-118]。值得注意的是,硒水平與妊娠并發癥進展的關系現在仍未被充分闡明。然而,低硒水平與不良胚胎結局之間的關系已被證實。大量橫截面和病例對照實驗并未發現兩者之間存在明顯的因果關系。因此我們可以推斷,妊娠并發癥及隨后結果可能與低硒水平有關,也可能僅僅是母體對氧化應激狀態升高的簡單生理反應[119]。
    “妊娠前硒水平是否比妊娠期硒水平對預防妊娠高血壓更重要?”這一假設目前仍需進一步驗證[15]。一般來說,硒水平可能會對卵母細胞發育、受精以及著床帶來影響[8,15]。因此推薦的做法是在妊娠期增加硒攝入[120]。此外,一些關于硒對生殖健康作用的研究推薦的妊娠期最佳補硒時間點差異較大。因此,迄今為止補硒的最佳時間依然沒有定論[121]。與硒相關的關鍵信息缺乏,在很大程度上得到了其他報告的補充,這些報告鼓勵進一步闡明補充微量元素的時間點對妊娠結果的潛在影響[122,123]。2017年,Mamon和Ramos進行的一項小鼠研究指出,妊娠期間補硒(3.0μg/d)的最佳時間在于圍孕期的不同階段[121]。與對照組及妊娠前-妊娠期補硒組相比,研究者們僅在妊娠前補硒組和僅在妊娠期補硒組中觀察到了囊胚質量的提高和胚胎植入前的損失降低[121]。這些結果表明,妊娠前和妊娠期是圍孕期補硒的兩個最佳時間段,僅在其中一個時期補硒能提高囊胚的發育能力和胚胎植入的成功率[121]。
    最近,一項小樣本實驗表明,硒與多種妊娠并發癥相關[15,37,124,125]。研究發現,基線硒水平的人群的血清硒與SELENOP水平正相關[124]。此外,在正常懷孕期間,全血硒濃度因妊娠發生下降了12%[37,126,127]。血漿體積相同的情況下,妊娠期全血硒濃度下降的另一可能原因在于硒通過在胎盤中高度表達的SELENOP被轉運給了胎兒[68,72]。相反,更高的硒水平則與更低風險的流產和早產相關。一些隨機對照試驗表明,高硒攝入或高硒水平對子癇前癥和自身免疫性甲狀腺疾病有益。硒能改善氧化應激、內質網應激和炎癥(圖1),從而保護內質網,調控類二十烷酸的生成,調控血管張力,以及抑制感染,這些對妊娠期可能都是至關重要的[29]。
     
     
     
    英國的一項覆蓋了230名初產孕婦的雙盲安慰劑對照先導實驗中,將妊娠12-14周的孕婦隨機分組并為其提供60μg/d富硒酵母或安慰劑直至分娩[37]。結果發現,補硒組在12-35周之間的全血硒濃度顯著增加,而安慰劑組則顯著降低。同樣的,補硒組在妊娠35周時的全血硒和血漿SELENOP水平顯著高于安慰劑組[37]。此外,該研究還發現補硒和血清可溶性血管內皮生長因子受體-1(sFlt-1)呈負相關,表明補硒有益于限制sFlt-1的生成從而具有抗血管生成的能力,并有益于改善子癇前期的病理生理。這是唯一調查并得出了“低硒水平人群補硒與子癇前期風險相關”結果的研究[37]。此外,最近一項報告顯示波蘭孕婦孕周硒水平逐月下降,導致大量孕婦發展成嚴重缺硒。妊娠期女性的平均硒和SELENOP水平也被發現在不斷下降[124]。該研究發現在所有組的孕婦的三個月妊娠期中,硒與SELENOP濃度正相關[124]。相同現象出現在最近另一項關于波蘭母親與子女定群的研究中:孕婦的血漿硒濃度從第一個月到第三個月下降了23%(48.3+/-10.6到37.3+/-9.8μg/L)[125]。

    子宮內生長受限是圍產期死亡率的首要原因,影響了10-15%孕婦[128,129]。有報道顯示,更高水平的ROS和炎癥生物標記物在子宮內生長限制的發育和病理過程中起重要作用[130,131]。Mesdaghinia及其同事開展的一項隨機雙盲安慰劑對照試驗以研究補硒對子宮內生長限制高風險孕婦(n=60)的臨床癥狀和代謝狀況的影響[131]。

    硒還與其它妊娠并發癥相關,如習慣性流產[56,132,133]、小于胎齡兒[119,134]和產后甲狀腺功能不足[135]。一些隨機對照試驗和觀察性研究發現,硒能減少甲狀腺過氧化物酶抗體水平以及甲狀腺功能減退和產后甲狀腺疾病的發生[136]。甲狀腺過氧化物酶抗體陽性的孕婦將會有更高風險發展成產后甲狀腺功能不全(PPTD)和永久性甲狀腺功能減退[135]。而硒被發現能減輕自身免疫性甲狀腺炎患者的甲狀腺炎[135]。一項關于甲狀腺過氧化物酶抗體陽性(TPOAb陽性)孕婦的高質量隨機對照試驗[135]發現,與安慰劑對照組相比,每天補充200μg硒代蛋氨酸顯著減少了TPOAb效價,降低了甲狀腺炎、產后甲狀腺疾病和永久性甲狀腺功能減退的發生[135]。雖然現有文獻證明補硒能以某種方式有益于減少缺硒孕婦并發癥發生,然而,正在開展或未來將要開展的干預實驗結果可能會加強或否定增加硒攝入的觀點。
     
    9.硒和硒蛋白對生殖系統癌癥的影響
     
    人們關于硒在癌癥發生和癌癥治療方面的作用已經爭論了數十年,硒蛋白會預防、抑制還是促進癌癥發展目前仍爭論不休[137]。卵巢癌是女性第五大癌癥死因,具有最高的總體死亡率和較低的五年生存率[138]。超過90%的卵巢癌是上皮性卵巢癌(EOC),EOC中包括了病理和分子學特征不同的多種類型[138]。一些文獻證據表明,硒和硒蛋白能在卵巢癌等女性生殖系統癌癥中發揮作用 [139]。與健康女性相比,患有宮頸良性腫瘤及癌癥、子宮體癌或卵巢癌的女性的血漿硒和GPX活性顯著降低[140]。這些發現表明,患有女性生殖系統相關腫瘤的女性往往伴隨著更低的抗氧化能力(與硒相關)[140]。Agnani等發現,患有乳頭狀漿液性卵巢癌的女性的GPX3活性呈階段依賴性降低[139]。同時,在腫瘤復發的女性患者中的血漿GPX3水平也被觀察到出現降低,且當患者和對照組只納入50歲以上的女性時,這些水平依賴性降低變得更加明顯[139]。此外,在大鼠和人類中觀察到在所有級別的子宮內膜腺癌中均出現了GPX3下調[139,141]。一些早期研究發現,細胞上皮性卵巢癌組織中的GPX3高于對照組[142-144]。雖然其潛在分子學機制未被充分闡明,但這些結果已經表明GPX3活性存在腫瘤特異性[138]。在一項近期研究中,Wu及其同事發現六氟化鉑敏感組中的GPX3相較于六氟化鉑耐受組被下調[138]。故此可推斷,GPX3抑制腫瘤的作用機制可能主要歸因于啟動子的超甲基化、c-Met表達的失調以及能清除有害自由基的抗氧化酶的作用[138]。然而,GPX3響應抗腫瘤藥物的這種潛在機制中仍然存在大量未知,需要進一步闡明[138]。不過,硒和硒蛋白的這些作用也許能為生殖系統癌癥的靶向治療和預防提供策略。
     
    10.總結
     
    在本綜述中,我們綜合闡述了硒與硒蛋白在生殖以及一些與動物、人類生育相關疾病中的作用。從早期動物和人類研究中可看出,硒與硒蛋白能調控抗氧化平衡,因而對女性的最優生殖而言是必需的。
    硒與硒蛋白在某些女性生育領域的作用目前仍未被充分闡明,需要進一步研究與思考,這些領域包括母體膳食硒攝入對氧化應激的影響,硒對胎兒卵巢發育與功能的影響,補硒對改善胎盤氧化應激的作用等。此外,人們對懷孕前時期的卵巢生理學方面,尤其是激素合成和卵巢濾泡發育方面關注較少,此外,生殖效率和生殖健康也缺乏關注。最近一些動物體外實驗證據表明硒和硒蛋白在卵母細胞成熟和受精中具有潛在作用,然而體內對照試驗仍然大幅度缺乏。此外,硒與硒蛋白在不同卵巢疾?。òò┌Y)中作用的證據也較少且具有較大不確定性。同時,硒和硒蛋白在改善由輔助生殖技術(如IVF)和胚胎發育引起的氧化和氮化應激中的作用也未被充分闡明。另外,硒和硒蛋白與女性生殖(動物和人類)之間的關系仍存在許多問題等待人們回答。對這些問題的回答將會有助于闡明硒這種潛力非凡的微量元素對女性生育及健康的潛在生物功能。
    補硒的響應曲線呈現U型,這意味著補硒雖然對缺硒個體有益,但對硒含量充足的個體或許會為其帶來健康風險[145]。因此,我們必須將硒攝入量維持在合理范圍,特別是對那些具有適當或高硒水平的人群。關于補硒對妊娠期的影響,一些在硒水平較低的人群中進行的高質量隨機對照試驗呈現出了令人振奮的結果[37]。然而,這些試驗在未來仍需要納入更多樣本數以闡明硒和硒蛋白減少妊娠相關并發癥(如先兆子癇)風險的潛在分子和生物化學機制。在本綜述中,目前正在進行的實驗和薈萃分析應該很快就能得出適當的建議。目前,向孕婦銷售的含硒補充劑的使用量很大,而在發達國家,孕婦食用此類補充劑的比例非常高,這使得研究者們越來越難將受試者(孕婦)納入隨機對照試驗。
    綜上所述,關于硒和硒蛋白在女性生殖中的改善作用的現有證據水平和質量都很高,但是這類研究的數量還不足以得出可靠的結論。因此,闡明補充硒和含硒蛋白(如GPX、SELENOP、SELENOS)對卵巢功能、妊娠相關并發癥和女性整體生殖能力的潛在影響將具有巨大價值。
     

     
    原文:Qazi I, Angel C, Yang H, et al. Selenium, Selenoproteins, and Female Reproduction: A Review[J]. Molecules, 2018, 23(12): 3053.
     
    References
     
    1. Rayman, M.P. The importance of selenium to human health. The Lancet 2000, 356, 233–241. [CrossRef]
    2. Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [CrossRef] [PubMed]
    3. Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science 2003, 300, 1439–1443. [CrossRef] [PubMed]
    4. Papp, L.V.; Lu, J.; Holmgren, A.; Khanna, K.K. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox Signaling 2007, 9, 775–806. [CrossRef] [PubMed]
    5. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M. Selenoprotein gene nomenclature. J. Biol. Chem. 2016, 291,
    24036–24040. [CrossRef] [PubMed]
    6. Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants 2018, 7, 66. [CrossRef] [PubMed] Molecules 2018, 23, 3053 18 of 24
    7. Pappas, A.; Zoidis, E.; Surai, P.; Zervas, G. Selenoproteins and maternal nutrition. Comp. Biochem. Physiol. Part. B: Biochem. Mol. Biol. 2008, 151, 361–372. [CrossRef] [PubMed]
    8. Ceko, M.J.; Hummitzsch, K.; Hatzirodos, N.; Bonner,W.M.; Aitken, J.B.; Russell, D.L.; Lane, M.; Rodgers, R.J.; Harris, H.H. X-Ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics 2015, 7, 71–82. [CrossRef] [PubMed]
    9. Ceko, M.J.; Hummitzsch, K.; Bonner,W.M.; Aitken, J.B.; Spiers, K.M.; Rodgers, R.J.; Harris, H.H. Localization of the trace elements iron, zinc and selenium in relation to anatomical structures in bovine ovaries by X-ray fluorescence imaging. Microsc. Microanal. 2015, 21, 695–705. [CrossRef] [PubMed]
    10. Paszkowski, T.; Traub, A.; Robinson, S.; McMaster, D. Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin. Chim. Acta 1995, 236, 173–180. [CrossRef]
    11. Baek, I.J.; Yon, J.M.; Lee, S.R.; Kim, M.R.; Hong, J.; Lee, B.; Yun, Y.; Nam, S.Y. Differential Expression of Gastrointestinal Glutathione Peroxidase (GI-GPx) Gene during Mouse Organogenesis. Anat. Histol. Embryo. 2011, 40, 210–218. [CrossRef] [PubMed]
    12. Xu, X.; Leng, J.-Y.; Gao, F.; Zhao, Z.-A.; Deng,W.-B.; Liang, X.-H.; Zhang, Y.-J.; Zhang, Z.-R.; Li, M.; Sha, A.-G. Differential expression and anti-oxidant function of glutathione peroxidase 3 in mouse uterus during decidualization. FEBS Lett. 2014, 588, 1580–1589. [CrossRef] [PubMed]
    13. Santos, C.; García-Fuentes, E.; Callejón-Leblic, B.; García-Barrera, T.; Gómez-Ariza, J.L.; Rayman, M.P.; Velasco, I. Selenium, selenoproteins and selenometabolites in mothers and babies at the time of birth. Br. J. Nutr. 2017, 117, 1304–1311. [CrossRef] [PubMed]
    14. Burk, R.F.; Olson, G.E.; Hill, K.E.;Winfrey, V.P.; Motley, A.K.; Kurokawa, S. Maternal-fetal transfer of selenium in the mouse. FASEB J. 2013, 27, 3249–3256. [CrossRef] [PubMed]
    15. Rayman, M.P.; Bath, S.C.;Westaway, J.;Williams, P.; Mao, J.; Vanderlelie, J.J.; Perkins, A.V.; Redman, C.W. Selenium status in UK pregnant women and its relationship with hypertensive conditions of pregnancy. Br. J. Nutr. 2015, 113, 249–258. [CrossRef] [PubMed]
    16. Hayashi, K.-G.; Ushizawa, K.; Hosoe, M.; Takahashi, T. Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles. Reprod. Biol. Endocrinol. 2010, 8, 11. [CrossRef] [PubMed]
    17. Yant, L.J.; Ran, Q.; Rao, L.; Van Remmen, H.; Shibatani, T.; Belter, J.G.; Motta, L.; Richardson, A.; Prolla, T.A. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radical Biol. Med. 2003, 34, 496–502. [CrossRef]
    18. Imai, H.; Hirao, F.; Sakamoto, T.; Sekine, K.; Mizukura, Y.; Saito, M.; Kitamoto, T.; Hayasaka, M.; Hanaoka, K.; Nakagawa, Y. Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem. Biophys. Res. Commun. 2003, 305, 278–286. [CrossRef]
    19. Mistry, H.D.;Wilson, V.; Ramsay, M.M.; Symonds, M.E.; Pipkin, F.B. Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension 2008, 52, 881–888. [CrossRef]
    [PubMed]
    20. Peng, X.; Lin, Y.; Li, J.; Liu, M.;Wang, J.; Li, X.; Liu, J.; Jia, X.; Jing, Z.; Huang, Z. Evaluation of Glutathione Peroxidase 4 role in Preeclampsia. Sci. Rep. 2016, 6, 33300. [CrossRef] [PubMed]
    21. Malinova, M.; Paskaleva, V. Selenium and glutathione peroxidase in patients with preeclampsia. Akush. Ginekol. 2013, 52, 3–7.
    22. Imai, H.; Hakkaku, N.; Iwamoto, R.; Suzuki, J.; Suzuki, T.; Tajima, Y.; Konishi, K.; Minami, S.; Ichinose, S. Ishizaka, K. Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J. Biol. Chem. 2009, 284, 32522–32532. [CrossRef] [PubMed]
    23. Ahsan, U.; Kamran, Z.; Raza, I.; Ahmad, S.; Babar, W.; Riaz, M.; Iqbal, Z. Role of selenium in male reproduction—A review. Anim. Reprod. Sci. 2014, 146, 55–62. [CrossRef] [PubMed]
    24. Chabory, E.; Damon, C.; Lenoir, A.; Kauselmann, G.; Kern, H.; Zevnik, B.; Garrel, C.; Saez, F.; Cadet, R.; Henry-Berger, J. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J. Clin. Investing. 2009, 119, 2074–2085. [CrossRef] [PubMed]
    25. Jakupoglu, C.; Przemeck, G.K.; Schneider, M.; Moreno, S.G.; Mayr, N.; Hatzopoulos, A.K.; de Angelis, M.H.; Wurst,W.; Bornkamm, G.W.; Brielmeier, M. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol. Cell. Biol. 2005, 25, 1980–1988. [CrossRef] [PubMed] Molecules 2018, 23, 3053 19 of 24
    26. Bondareva, A.A.; Capecchi, M.R.; Iverson, S.V.; Li, Y.; Lopez, N.I.; Lucas, O.; Merrill, G.F.; Prigge, J.R.; Siders, A.M.;Wakamiya, M. Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. Free Radical Biol. Med. 2007, 43, 911–923. [CrossRef] [PubMed]
    27. Conrad, M.; Jakupoglu, C.; Moreno, S.G.; Lippl, S.; Banjac, A.; Schneider, M.; Beck, H.; Hatzopoulos, A.K.; Just, U.; Sinowatz, F. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell. Biol. 2004, 24, 9414–9423. [CrossRef] [PubMed]
    28. Su, D.; Novoselov, S.V.; Sun, Q.-A.; Moustafa, M.E.; Zhou, Y.; Oko, R.; Hatfield, D.L.; Gladyshev, V.N. Mammalian selenoprotein thioredoxin-glutathione reductase roles in disulfide bond formation and sperm maturation. J. Biol. Chem. 2005, 280, 26491–26498. [CrossRef] [PubMed]
    29. Rayman, M.P. Selenium and adverse health conditions of human pregnancy. In Selenium; Springer: New York, NY, USA, 2011; pp. 531–544.
    30. Galton, V.A.; Martinez, E.; Hernandez, A.; Germain, E.A.S.; Bates, J.M.; Germain, D.L.S. Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase. J. Clin. Investing. 1999, 103, 979–987. [CrossRef] [PubMed]
    31. Huang, S.A.; Dorfman, D.M.; Genest, D.R.; Salvatore, D.; Larsen, P.R. Type 3 iodothyronine deiodinase is highly expressed in the human uteroplacental unit and in fetal epithelium. J. Clin. Endocrinol. Metab. 2003, 88, 1384–1388. [CrossRef] [PubMed]
    32. Khera, A.; Vanderlelie, J.; Perkins, A. Selenium supplementation protects trophoblast cells from mitochondrial oxidative stress. Placenta 2013, 34, 594–598. [CrossRef] [PubMed]
    33. Michaelis, M.; Gralla, O.; Behrends, T.; Scharpf, M.; Endermann, T.; Rijntjes, E.; Pietschmann, N.; Hollenbach, B.; Schomburg, L. Selenoprotein P in seminal fluid is a novel biomarker of sperm quality. Biochem. Biophys. Res. Commun. 2014, 443, 905–910. [CrossRef] [PubMed]
    34. Renko, K.;Werner, M.; Renner-Muller, I.; Cooper, T.G.; Yeung, C.H.; Hollenbach, B.; Scharpf, M.; Kohrle, J.; Schomburg, L.; Schweizer, U. Hepatic selenoprotein P (SePP) expression restores selenium transport and prevents infertility and motor-incoordination in Sepp-knockout mice. Biochem. J. 2008, 409, 741–749. [CrossRef] [PubMed]
    35. Olson, G.E.;Winfrey, V.P.; NagDas, S.K.; Hill, K.E.; Burk, R.F. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J. Biol. Chem. 2007, 282, 12290–12297. [CrossRef] [PubMed]
    36. Olson, G.E.;Winfrey, V.P.; NagDas, S.K.; Hill, K.E.; Burk, R.F. Selenoprotein P is required for mouse sperm development. Biol. Reprod. 2005, 73, 201–211. [CrossRef] [PubMed]
    37. Rayman, M.P.; Searle, E.; Kelly, L.; Johnsen, S.; Bodman-Smith, K.; Bath, S.C.; Mao, J.; Redman, C.W. Effect of selenium on markers of risk of pre-eclampsia in UK pregnant women: a randomised, controlled pilot trial. Br. J. Nutr. 2014, 112, 99–111. [CrossRef] [PubMed]
    38. Moses, E.K.; Johnson, M.P.; Tommerdal, L.; Forsmo, S.; Curran, J.E.; Abraham, L.J.; Charlesworth, J.C.; Brennecke, S.P.; Blangero, J.; Austgulen, R. Genetic association of preeclampsia to the inflammatory response gene SEPS1. Am. J. Obstet. Gynecol. 2008, 198, 20. [CrossRef] [PubMed]
    39. Turanov, A.A.; Malinouski, M.; Gladyshev, V.N. Selenium and male reproduction. In Selenium: Its Molecular Biology and Role in Human Health; Hatfield, D., Berry, M., Gladyshev, V., Eds.; Springer: New York, NY, USA, 2011; pp. 409–417.
    40. Letavayová, L.; Vlˇcková, V.; Brozmanová, J. Selenium: from cancer prevention to DNA damage. Toxicology 2006, 227, 1–14. [CrossRef] [PubMed]
    41. Schrauzer, G.N. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 2000, 130, 1653–1656. [CrossRef] [PubMed]
    42. Rayman, M.P.; Infante, H.G.; Sargent, M. Food-chain selenium and human health: spotlight on speciation. Br. J. Nutr. 2008, 100, 238–253. [CrossRef] [PubMed]
    43. Institute of Medicine: Panel on Dietary Antioxidants and Related Compounds: Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington (DC). Available online: https://www.ncbi. nlm.nih.gov/books/NBK225470/ (accessed on 19 November 2018).
    44. Council, N.R. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; p. 384.
    45. Surai, P.F.; Fisinin, V.I. Selenium in Pig Nutrition and reproduction: Boars and semen quality—A Review. Asian-Australas. J. Anim. Sci. 2015, 28, 730. [CrossRef] [PubMed] Molecules 2018, 23, 3053 20 of 24
    46. Council, N.R. Nutrient Requirements of Horses: Sixth Revised Edition; The National Academies Press: Washington, DC, USA, 2007; p. 360.
    47. Geor, R.J.; Coenen, M.; Harris, P. Equine Applied and Clinical Nutrition E-Book: Health, Welfare and Performance. FEMS Microbiol. Lett. 2014, 57, 73–77.
    48. Council, N.R. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001; The National Academies Press: Washington, DC, USA, 2001; p. 408.
    49. Council, N.R. Nutrient Requirements of Beef Cattle: Seventh Revised Edition: Update 2000; The National Academies Press: Washington, DC, USA, 2000; p. 248.
    50. Faye, B.; Seboussi, R. Selenium in camel–A review. Nutrients 2009, 1, 30–49. [CrossRef] [PubMed]
    51. Rayman, M.P. The use of high-selenium yeast to raise selenium status: how does it measure up? Br. J. Nutr. 2004, 92, 557–573. [CrossRef] [PubMed]
    52. Foresta, C.; Flohé, L.; Garolla, A.; Roveri, A.; Ursini, F.; Maiorino, M. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol. Reprod. 2002, 67, 967–971. [CrossRef] [PubMed]
    53. Xiong, X.; Lan, D.; Li, J.; Lin, Y.; Li, M. Selenium supplementation during in vitro maturation enhances meiosis and developmental capacity of yak oocytes. Anim. Sci. J. 2018, 89, 298–306. [CrossRef] [PubMed]
    54. Kommisrud, E.; Østerås, O.; Vatn, T. Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Vet. Scand. 2005, 46, 229. [CrossRef] [PubMed]
    55. Mehdi, Y.; Dufrasne, I. Selenium in cattle: a review. Molecules 2016, 21, 545. [CrossRef] [PubMed]
    56. Al-Kunani, A.; Knight, R.; Haswell, S.; Thompson, J.; Lindow, S. The selenium status of women with a history of recurrent miscarriage. BJOG: An. Int. J. Obstet. Gynaecol. 2001, 108, 1094–1097.
    57. Güvenç, M.; Güven, H.; Karata¸s, F.; Aygün, A.D.; Bekta¸s, S. Low levels of selenium in miscarriage. J. Trace Elements Exp. Med. 2002, 15, 97–101. [CrossRef]
    58. Rumiris, D.; Purwosunu, Y.; Wibowo, N.; Farina, A.; Sekizawa, A. Lower rate of preeclampsia after antioxidant supplementation in pregnant women with low antioxidant status. Hypertens. Pregnancy 2006, 25, 241–253. [CrossRef] [PubMed]
    59. Watson, M.; Van Leer, L.; Vanderlelie, J.; Perkins, A. Selenium supplementation protects trophoblast cells from oxidative stress. Placenta 2012, 33, 1012–1019. [CrossRef] [PubMed]
    60. Tsuzuki, S.; Morimoto, N.; Hosokawa, S.; Matsushita, T. Associations of maternal and neonatal serum trace element concentrations with neonatal birth weight. PLoS ONE 2013, 8, e75627. [CrossRef] [PubMed]
    61. Yao, X.; Ei-Samahy, M.; Fan, L.; Zheng, L.; Jin, Y.; Zhang, G.; Liu, Z.;Wang, F. In vitro influence of selenium on the proliferation of and steroidogenesis in goat luteinized granulosa cells. Theriogenology 2018, 114, 70–80. [CrossRef] [PubMed]
    62. Hill, K.E.; Lyons, P.R.; Burk, R.F. Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem. Biophys Res. Commun. 1992, 185, 260–263. [CrossRef]
    63. Bösl, M.R.; Takaku, K.; Oshima, M.; Nishimura, S.; Taketo, M.M. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc. Natl. Acad. Sci. 1997, 94, 5531–5534. [CrossRef] [PubMed]
    64. Lee, A.M.; Huel, G.; Godin, J.; Hellier, G.; Sahuquillo, J.; Moreau, T.; Blot, P. Inter-individual variation of selenium in maternal plasma, cord plasma and placenta. Sci. Total Environ. 1995, 159, 119–127. [CrossRef]
    65. Eisenmann, C.; Miller, R. The placental transfer and toxicity of selenite relative to cadmium in the human term perfused placenta. Placenta 1994, 15, 883–895. [CrossRef]
    66. Olson, G.E.; Whitin, J.C.; Hill, K.E.; Winfrey, V.P.; Motley, A.K.; Austin, L.M.; Deal, J.; Cohen, H.J.; Burk, R.F. Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am. J. Physiol. Ren. Physiol. 2009, 298, F1244–F1253. [CrossRef] [PubMed]
    67. Burk, R.F.; Hill, K.E. Selenoprotein P—expression, functions, and roles in mammals. Biochim. et Biophys. Acta Gen. Subj. 2009, 1790, 1441–1447. [CrossRef] [PubMed]
    68. Burk, R.F.; Hill, K.E. Regulation of selenium metabolism and transport. Annu. Rev. Nutr. 2015, 35, 109–134. [CrossRef] [PubMed]
    69. Kurokawa, S.; Hill, K.E.; McDonald, W.H.; Burk, R.F. Long-isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin-binding properties and apolipoprotein E receptor-2 (apoER2). J. Biol. Chem. 2012, 287, 28717–28726. [CrossRef] [PubMed] Molecules 2018, 23, 3053 21 of 24
    70. Bou-Resli, M.; Dashti, H.; Mathew, T.; Al-Zaid, N. Pre-and postnatal tissue selenium of the rat in the growing state. Neonatology 2001, 80, 169–172. [CrossRef] [PubMed]
    71. Hatzirodos, N.; Hummitzsch, K.; Irving-Rodgers, H.F.; Harland, M.L.; Morris, S.E.; Rodgers, R.J. Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genomics 2014, 15, 40. [CrossRef] [PubMed]
    72. Kasik, J.; Rice, E. Selenoprotein P expression in liver, uterus and placenta during late pregnancy. Placenta 1995, 16, 67–74. [CrossRef]
    73. Galton, V.A.; Martinez, E.; Hernandez, A.; St. Germain, E.A.; Bates, J.M.; St. Germain, D.L. The type 2 iodothyronine deiodinase is expressed in the rat uterus and induced during pregnancy. Endocrinology 2001, 142, 2123–2128. [CrossRef] [PubMed]
    74. Koopdonk-Kool, J.M.; De Vijlder, J.; Veenboer, G.J.; Ris-Stalpers, C.; Kok, J.H.; Vulsma, T.; Boer, K.; Visser, T.J. Type II and type III deiodinase activity in human placenta as a function of gestational age. J. Clin. Endocrinol. Metab. 1996, 81, 2154–2158. [PubMed]
    75. Ejima, K.; Koji, T.; Nanri, H.; Kashimura, M.; Ikeda, M. Expression of thioredoxin and thioredoxin reductase in placentae of pregnant mice exposed to lipopolysaccharide. Placenta 1999, 20, 561–566. [CrossRef] [PubMed]
    76. Ejima, K.; Nanri, H.; Toki, N.; Kashimura, M.; Ikeda, M. Localization of thioredoxin reductase and thioredoxin in normal human placenta and their protective effect against oxidative stress. Placenta 1999, 20, 95–101. [CrossRef] [PubMed]
    77. Basini, G.; Tamanini, C. Selenium stimulates estradiol production in bovine granulosa cells: possible involvement of nitric oxide. Domes. Anim. Endocrinol. 2000, 18, 1–17. [CrossRef]
    78. Grazul-Bilska, A.T.; Caton, J.S.; Arndt, W.; Burchill, K.; Thorson, C.; Borowczyk, E.; Bilski, J.J.; Redmer, D.A.; Reynolds, L.P.; Vonnahme, K.A. Cellular proliferation and vascularization in ovine fetal ovaries: Effects of undernutrition and selenium in maternal diet. Reproduction 2009, 137, 699–707. [CrossRef] [PubMed]
    79. Kamada, H.; Ikumo, H. Effect of selenium on cultured bovine luteal cells. Anim. Reprod. Sci. 1997, 46, 203–211. [CrossRef]
    80. Tilly, J.L.; Tilly, K. Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology 1995, 136, 242–252. [CrossRef] [PubMed]
    81. Grabek, M.; Swies, Z.; Borzecki, A. The influence of selenium on the reproduction of rats. Eur. PMC 1991, 46, 103–105.
    82. Özkaya, M.O.; Naz?ro? glu, M.; Barak, C.; Berkkanoglu, M. Effects of multivitamin/mineral supplementation on trace element levels in serum and follicular fluid of women undergoing in vitro fertilization (IVF). Biol. Trace Elem. Res. 2011, 139, 1–9. [CrossRef] [PubMed]
    83. Ruder, E.H.; Hartman, T.J.; Goldman, M.B. Impact of oxidative stress on female fertility. Curr. Opin. Obstet. Gynecol. 2009, 21, 219–222. [CrossRef] [PubMed]
    84. Mehdi, Y.; Hornick, J.-L.; Istasse, L.; Dufrasne, I. Selenium in the environment, metabolism and involvement in body functions. Molecules 2013, 18, 3292–3311. [CrossRef] [PubMed]
    85. Edassery, S.L.; Shatavi, S.V.; Kunkel, J.P.; Hauer, C.; Brucker, C.; Penumatsa, K.; Yu, Y.; Dias, J.A.; Luborsky, J.L. Autoantigens in ovarian autoimmunity associated with unexplained infertility and premature ovarian failure. Fertil. Steril. 2010, 94, 2636–2641. [CrossRef] [PubMed]
    86. Singh, A.K.; Chattopadhyay, R.; Chakravarty, B.; Chaudhury, K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod. Toxicol. 2013, 42, 116–124. [CrossRef] [PubMed]
    87. Coskun, A.; Arikan, T.; Kilinc, M.; Arikan, D.C.; Ekerbiçer, H.Ç. Plasma selenium levels in Turkish women with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 168, 183–186. [CrossRef] [PubMed]
    88. Luddi, A.; Capaldo, A.; Focarelli, R.; Gori, M.; Morgante, G.; Piomboni, P.; De Leo, V. Antioxidants reduce oxidative stress in follicular fluid of aged women undergoing IVF. Reprod. Biol. Endocrinol. 2016, 14, 57. [CrossRef] [PubMed]
    89. Jiménez Tuñón, J.M.; Trilles, P.P.; Molina, M.G.; Duvison, M.H.; Pastor, B.M.; Martín, P.S.; Martín, F.S.; Sánchez-Borrego, R. A Double-Blind, Randomized Prospective Study to Evaluate the Efficacy of Previous TherapyWith Melatonin, Myo-inositol, Folic Acid, and Selenium in Improving the Results of an Assisted Reproductive Treatment. Clin. Med. Insight. Ther. 2017, 9, 1179559X17742902. [CrossRef] Molecules 2018, 23, 3053 22 of 24
    90. Wilson, R.L.; Bianco-Miotto, T.; Leemaqz, S.Y.; Grzeskowiak, L.E.; Dekker, G.A.; Roberts, C.T. Early pregnancy maternal trace mineral status and the association with adverse pregnancy outcome in a cohort of Australian women. J. Trace Elem. Med. Biol. 2018, 46, 103–109. [CrossRef] [PubMed]
    91. Parman, T.; Wiley, M.J.; Wells, P.G. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat. Med. 1999, 5, 582–585. [CrossRef] [PubMed]
    92. Winn, L.M.; Wells, P.G. Maternal administration of superoxide dismutase and catalase in phenytoin teratogenicity1. Free Radical Biol. Med. 1999, 26, 266–274. [CrossRef]
    93. Thompson, J. In vitro culture and embryo metabolism of cattle and sheep embryos—a decade of achievement. Anim. Reprod. Sci. 2000, 60, 263–275. [CrossRef]
    94. Uhm, S.J.; Gupta, M.K.; Yang, J.H.; Lee, S.H.; Lee, H.T. Selenium improves the developmental ability and reduces the apoptosis in porcine parthenotes. Mol. Reprod. Dev. 2007, 74, 1386–1394. [CrossRef] [PubMed]
    95. McKeehan, W.L.; Hamilton, W.G.; Ham, R.G. Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc. Natl. Acad. Sci. 1976, 73, 2023–2027. [CrossRef] [PubMed]
    96. Hewlett, G. Strategies for optimising serum-free media. Cytotechnology 1991, 5, 3–14. [CrossRef] [PubMed]
    97. Ufer, C.; Wang, C.C. The roles of glutathione peroxidases during embryo development. Front. Mol. Neurosci. 2011, 4, 12. [CrossRef] [PubMed]
    98. Yoshida, M.; Ishigaki, K.; Nagai, T.; Chikyu, M.; Pursel, V.G. Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol. Reprod. 1993, 49, 89–94. [CrossRef] [PubMed]
    99. Pierce, G.B.; Parchment, R.E.; Lewellyn, A.L. Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation 1991, 46, 181–186. [CrossRef] [PubMed]
    100. Parchment, R. The implications of a unified theory of programmed cell death, polyamines, oxyradicals and histogenesis in the embryo. Int. J. Dev. Biol. 2003, 37, 75–83.
    101. Abedelahi, A.; Salehnia, M.; Allameh, A.; Davoodi, D. Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Hum. Reprod. 2010, 25, 977–985. [CrossRef] [PubMed]
    102. Abedelahi, A.; Salehnia, M.; Allameh, A. The effects of different concentrations of sodium selenite on the in vitro maturation of preantral follicles in serum-free and serum supplemented media. J. Assist. Reprod. Genet. 2008, 25, 483–488. [CrossRef] [PubMed]
    103. Shi, L.; Ren, Y.; Zhang, C.; Yue, W.; Lei, F. Effects of organic selenium (Se-enriched yeast) supplementation in gestation diet on antioxidant status, hormone profile and haemato-biochemical parameters in Taihang Black Goats. Anim. Feed Sci. Technol. 2018, 238, 57–65. [CrossRef]
    104. Dalto, B.; Tsoi, S.; Audet, I.; Dyck, M.K.; Foxcroft, G.; Matte, J.J. Gene expression of porcine blastocysts from gilts fed organic or inorganic selenium and pyridoxine. Reproduction 2015, 149, 31–42. [CrossRef] [PubMed]
    105. Dalto, D.B.; Audet, I.; Lapointe, J.; Matte, J.J. The importance of pyridoxine for the impact of the dietary selenium sources on redox balance, embryo development, and reproductive performance in gilts. J. Trace Elem. Med. Biol. 2016, 34, 79–89. [CrossRef] [PubMed]
    106. Dalto, D.B.; Roy, M.; Audet, I.; Palin, M.-F.; Guay, F.; Lapointe, J.; Matte, J.J. Interaction between vitamin B6 and source of selenium on the response of the selenium-dependent glutathione peroxidase system to oxidative stress induced by oestrus in pubertal pig. J. Trace Elem. Med. Biol. 2015, 32, 21–29. [CrossRef] [PubMed]
    107. Fortier, M.E.; Audet, I.; Giguere, A.; Laforest, J.P.; Bilodeau, J.F.; Quesnel, H.; Matte, J.J. Effect of dietary organic and inorganic selenium on antioxidant status, embryo development, and reproductive performance in hyperovulatory first-parity gilts. J. Anim. Sci. 2012, 90, 231–240. [CrossRef] [PubMed]
    108. Chen, J.; Han, J.; Guan, W.; Chen, F.; Wang, C.; Zhang, Y.; Lv, Y.; Lin, G. Selenium and vitamin E in sow diets: I. Effect on antioxidant status and reproductive performance in multiparous sows. Anim. Feed Sci. Technol. 2016, 221, 111–123. [CrossRef]
    109. Nogales, F.; Ojeda, M.L.; Fenutría, M.; Murillo, M.L.; Carreras, O. Role of selenium and glutathione peroxidase on development, growth, and oxidative balance in rat offspring. Reproduction 2013, 146, 659–667. [CrossRef] [PubMed]
    110. Khera, A.; Dong, L.-F.; Holland, O.; Vanderlelie, J.; Pasdar, E.A.; Neuzil, J.; Perkins, A.V. Selenium supplementation induces mitochondrial biogenesis in trophoblasts. Placenta 2015, 36, 863–869. [CrossRef] [PubMed] Molecules 2018, 23, 3053 23 of 24
    111. Khera, A.; Vanderlelie, J.J.; Holland, O.; Perkins, A.V. Overexpression of endogenous anti-oxidants with selenium supplementation protects trophoblast cells from reactive oxygen species-induced apoptosis in a Bcl-2-dependent manner. Biol. Trace Elem. Res. 2017, 177, 394–403. [CrossRef] [PubMed]
    112. Perkins, A.; Khera, A.; Holland, O.; Vanderlelie, J. Trophoblast mitochondrial biogenesis and functionality is increased with selenium supplementation. Placenta 2016, 45, 118. [CrossRef]
    113. Mendelev, N.; Mehta, S.L.; Idris, H.; Kumari, S.; Li, P.A. Selenite stimulates mitochondrial biogenesis signaling and enhances mitochondrial functional performance in murine hippocampal neuronal cells. PLoS ONE 2012, 7, e47910. [CrossRef] [PubMed]
    114. Na, J.Y.; Seok, J.; Park, S.; Kim, J.S.; Kim, G.J. Effects of selenium on the survival and invasion of trophoblasts. Clin. Exp. Reprod. Med. 2018, 45, 10–16. [CrossRef] [PubMed]
    115. Fialova, L.; Malbohan, I.; Kalousova, M.; Soukupova, J.; Krofta, L.; Štipek, S.; Zima, T. Oxidative stress and inflammation in pregnancy. Scand. J. Clin. Lab. INVEST. 2006, 66, 121–128. [CrossRef] [PubMed]
    116. Orhan, H.; Önderoglu, L.; Yücel, A.; Sahin, G. Circulating biomarkers of oxidative stress in complicated pregnancies. Arch. Gynecol. Obst. 2003, 267, 189–195.
    117. Karowicz-Bilinska, A.; K?edziora-Kornatowska, K.; Bartosz, G. Indices of oxidative stress in pregnancy with fetal growth restriction. Free Radical Res. 2007, 41, 870–873. [CrossRef] [PubMed]
    118. Hracsko, Z.; Orvos, H.; Novak, Z.; Pal, A.; Varga, I.S. Evaluation of oxidative stress markers in neonates with intra-uterine growth retardation. Redox Rep. 2008, 13, 11–16. [CrossRef] [PubMed]
    119. Mariath, A.B.; Bergamaschi, D.P.; Rondó, P.H.; Ana, C.A.T.; de Fragas Hinnig, P.; Abbade, J.F.; Diniz, S.G. The possible role of selenium status in adverse pregnancy outcomes. Br. J. Nutr. 2011, 105, 1418–1428. [CrossRef] [PubMed]
    120. Richard, K.; Holland, O.; Landers, K.; Vanderlelie, J.J.; Hofstee, P.; Cuffe, J.S.; Perkins, A.V. Effects of maternal micronutrient supplementation on placental function. Placenta 2017, 54, 38–44. [CrossRef] [PubMed]
    121. Mamon, M.A.C.; Ramos, G.B. Maternal selenium-supplementation at various stages of periconception period: influence on murine blastocyst morphology and implantation status. J. Anim. Sci. Technol. 2017, 59, 7. [CrossRef] [PubMed]
    122. Cetin, I.; Berti, C.; Calabrese, S. Role of micronutrients in the periconceptional period. Hum. Reprod. Update 2009, 16, 80–95. [CrossRef] [PubMed]
    123. Berti, C.; Biesalski, H.; Gärtner, R.; Lapillonne, A.; Pietrzik, K.; Poston, L.; Redman, C.; Koletzko, B.; Cetin, I. Micronutrients in pregnancy: current knowledge and unresolved questions. Clin. Nutr. 2011, 30, 689–701. [CrossRef] [PubMed]
    124. Ambroziak, U.; Hybsier, S.; Shahnazaryan, U.; Krasnod?ebska-Kilja ´ nska, M.; Rijntjes, E.; Bartoszewicz, Z.; Bednarczuk, T.; Schomburg, L. Severe selenium deficits in pregnant women irrespective of autoimmune thyroid disease in an area with marginal selenium intake. J. Trace Elem. Med. Biol. 2017, 44, 186–191. [CrossRef] [PubMed]
    125. Polanska, K.; Krol, A.; Sobala,W.; Gromadzinska, J.; Brodzka, R.; Calamandrei, G.; Chiarotti, F.;Wasowicz,W.; Hanke, W. Selenium status during pregnancy and child psychomotor development—Polish Mother and Child Cohort study. Pediatr. Res. 2016, 79, 863. [CrossRef] [PubMed]
    126. Butler, J.A.; Whanger, P.D.; Tripp, M.J. Blood selenium and glutathione peroxidase activity in pregnant women: comparative assays in primates and other animals. Am. J. Clin. Nutr. 19821982, 36, 15–23. [CrossRef] [PubMed]
    127. Zachara, B.; Wardak, C.; Didkowski, W.; Maciag, A.; Marchaluk, E. Changes in blood selenium and glutathione concentrations and glutathione peroxidase activity in human pregnancy. Gynecol. Obst. Invest. 1993, 35, 12–17. [CrossRef] [PubMed]
    128. Jarvis, S.; Glinianaia, S.V.; Torrioli, M.-G.; Platt, M.-J.; Miceli, M.; Jouk, P.-S.; Johnson, A.; Hutton, J.; Hemming, K.; Hagberg, G. Cerebral palsy and intrauterine growth in single births: European collaborative study. The Lancet 2003, 362, 1106–1111. [CrossRef]
    129. Dikbas, L.; Yapca, O.E.; Dikbas, N.; Gundogdu, C. Paraoxonase-2 and paraoxonase-3: comparison of mRNA expressions in the placentae of unexplained intrauterine growth restricted and noncomplicated pregnancies. J. Mat.-Fet. Neonatal Med. 2017, 30, 1200–1206. [CrossRef] [PubMed]
    130. Takagi, Y.; Nikaido, T.; Toki, T.; Kita, N.; Kanai, M.; Ashida, T.; Ohira, S.; Konishi, I. Levels of oxidative stress and redox-related molecules in the placenta in preeclampsia and fetal growth restriction. Virchows Arch. 2004, 444, 49–55. [CrossRef] [PubMed] Molecules 2018, 23, 3053 24 of 24
    131. Mesdaghinia, E.; Rahavi, A.; Bahmani, F.; Sharifi, N.; Asemi, Z. Clinical and Metabolic Response to Selenium Supplementation in PregnantWomen at Risk for Intrauterine Growth Restriction: Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Trace Elem. Res. 2017, 178, 14–21. [CrossRef] [PubMed]
    132. Barrington, J.; Lindsay, P.; James, D.; Smith, S.; Roberts, A. Selenium deficiency and miscarriage: A possible link? Int. J. Obstet. Gynaecol. 1996, 103, 130–132. [CrossRef]
    133. Koçak, ˙I.; Aksoy, E.; Üstün, C. Recurrent spontaneous abortion and selenium deficiency. Int. J. Obstet. Gynaecol. 1999, 65, 79–80. [CrossRef]
    134. Mistry, H.D.; Kurlak, L.O.; Young, S.D.; Briley, A.L.; Broughton Pipkin, F.; Baker, P.N.; Poston, L. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Mat. Child Nutr. 2014, 10, 327–334. [CrossRef] [PubMed]
    135. Negro, R.; Greco, G.; Mangieri, T.; Pezzarossa, A.; Dazzi, D.; Hassan, H. The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J. Clin. End. Metab. 2007, 92, 1263–1268. [CrossRef] [PubMed]
    136. Rayman, M.P. Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proc. Nutr. Soci. 2018, 1–11. [CrossRef] [PubMed]
    137. Brigelius-Flohé, R.; Arnér, E.S. Selenium and selenoproteins in (redox) signaling, diseases, and animal models-200 year anniversary issue. Eur. PMC 2018, 127, 1–2. [CrossRef] [PubMed]
    138. Wu,W.;Wang, Q.; Yin, F.; Yang, Z.; Zhang,W.; Gabra, H.; Li, L. Identification of proteomic and metabolic signatures associated with chemoresistance of human epithelial ovarian cancer. Int. J. Clin. Oncol. 2016, 49, 1651–1665. [CrossRef] [PubMed]
    139. Agnani, D.; Camacho-Vanegas, O.; Camacho, C.; Lele, S.; Odunsi, K.; Cohen, S.; Dottino, P.; Martignetti, J.A. Decreased levels of serum glutathione peroxidase 3 are associated with papillary serous ovarian cancer and disease progression. J. Ovarian Res. 2011, 4, 18. [CrossRef] [PubMed]
    140. Piekutowski, K.; Makarewicz, R.; Zachara, B. The antioxidative role of selenium in pathogenesis of cancer of the female reproductive system. Neoplasma 2007, 54, 374–378. [PubMed]
    141. Falck, E.; Karlsson, S.; Carlsson, J.; Helenius, G.; Karlsson, M.; Klinga-Levan, K. Loss of glutathione peroxidase 3 expression is correlated with epigenetic mechanisms in endometrial adenocarcinoma. Cancer Cell Int. 2010, 10, 46. [CrossRef] [PubMed]
    142. Saga, Y.; Ohwada, M.; Suzuki, M.; Konno, R.; Kigawa, J.; Ueno, S.; Mano, H. Glutathione peroxidase 3 is a candidate mechanism of anticancer drug resistance of ovarian clear cell adenocarcinoma. Oncol. Rep. 2008, 20, 1299–1303. [CrossRef] [PubMed] 
    143. Lee, H.J.; Do, J.H.; Bae, S.; Yang, S.; Zhang, X.; Lee, A.; Choi, Y.J.; Park, D.C.; Ahn,W.S. Immunohistochemical evidence for the over-expression of Glutathione peroxidase 3 in clear cell type ovarian adenocarcinoma. Med. Oncol. 2011, 28, 010–9659. [CrossRef] [PubMed]
    144. Hough, C.D.; Cho, K.R.; Zonderman, A.B.; Schwartz, D.R.; Morin, P.J. Coordinately up-regulated genes in ovarian cancer. Cancer Res. 2001, 61, 3869–3876. [PubMed]
    145. Rayman, M.P.; Winther, K.H.; Pastor-Barriuso, R.; Cold, F.; Thvilum, M.; Stranges, S.; Guallar, E.; Cold, S. Effect of long-term selenium supplementation on mortality: results from a multiple-dose, randomized controlled trial. Free Radical Biol. Med. 2018. [CrossRef] [PubMed]


    本文由福山生物整理翻譯,轉載請注明出處。
    地址:深圳市南山區粵海街道高新中三道9號環球數碼大廈19樓
    電話:400-113-6988
    E-mail:dongfangxicao@163.com
    被邻居老头不停的要,刺客伍六七梅花13的胸,肥女巨肥BBwBBwBBwBw
  • <xmp id="immmm"><noscript id="immmm"></noscript>
  • <xmp id="immmm">
  • <noscript id="immmm"></noscript>
  • <td id="immmm"></td>
  • <td id="immmm"></td>